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Atmospheric and oceanic convection often occurs over areas occupied by many
localized circulation elements known as plumes. The convective transports therefore
may depend not only on the individual elements, but also on the interactions between
plumes and the turbulent environment created by other plumes. However, many
attempts to understand these plumes focus on individual isolated elements, and
the behaviour of an ensemble is not understood. Geophysical convection may be
influenced by rotation when the transit time of a convecting element is long compared
to an inertial period (for example in deep oceanic convection). Much recent attention
has been given to the effect of rotation on individual plumes, but the role of rotation
in modifying the behaviour of an ensemble is not fully understood. Here we examine
the behaviour of plumes within an ensemble, both with and without rotation, to
identify the influence of rotation on ensemble plume dynamics.

We identify the coherent structures (plumes) present in numerical solutions of
turbulent Rayleigh–Bénard convection, a canonical example of a turbulent plume
ensemble. We use a conditional sampling compositing technique to extract the typical
structure in both non-rotating and rotating solutions. The dynamical balances of
these composite plumes are evaluated and compared with entraining plume models.

We find many differences between non-rotating and rotating plumes in their trans-
ports of mass, buoyancy and momentum. As shown in previous studies, the expansion
of the turbulent plume by entrainment of exterior fluid is suppressed by strong ro-
tation. Our most significant new result is quantification of the continuous mixing
between the plume and ambient fluid which occurs at high rotation without any
net changes in plume volume. This mixing is generated by the plume–plume inter-
actions and acts to reduce the buoyancy anomaly of the plume. By contrast, in the
non-rotating case, no such loss of buoyancy by mixing occurs. As a result, the total
buoyancy transport by upwardly moving plumes diminishes across the layer in the
rotating case, while remaining approximately constant in the non-rotating case. At
high values of rotation, the net vertical acceleration is considerably reduced compared
to the non-rotating case due to loss of momentum through entrainment and mixing
and a decelerating pressure gradient which partially balances the buoyancy-driven
acceleration of plumes. As a result of the dilution of buoyancy, the pressure-gradient
deceleration and the loss of momentum due to mixing with the environment in the
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rotating solutions, the conversion of potential energy to kinetic energy is significantly
less than that of non-rotating plumes.

The combination of efficient lateral mixing and slow vertical movement by the
plumes accounts for the unstable mean temperature gradient that occurs in rotating
Rayleigh–Bénard convection, while the less penetrative convection found at low
Rossby number is a consequence of the reduced kinetic energy transport. Within the
ensemble of plumes identified by the conditional sampling algorithm, distributions
of vertical velocity, buoyancy and vorticity mimic those of the volume as a whole.
Plumes cover a small fraction of the total area, yet account for most of the vertical
heat flux.

1. Introduction
In turbulent convection transport of tracers and heat is effected by intermittent

discrete elements often known as plumes. Because they have long lifetimes and move
large distances, relative to the Eulerian covariance integral scales of the turbulence,
these coherent structures cause non-local, hence non-Fickian material transport across
the convective layer. In contrast, many parameterizations of turbulent fluxes are based
on local interaction models of the turbulence (e.g. Mellor & Yamada 1982), ignoring
the presence of these structures, and result in down-gradient transports. A greater
understanding of the structures will enable development of more accurate models of
turbulent convective transports.

In a typical geophysical convection context many plumes are generated by a
distributed buoyancy source, since the convecting-layer depth is usually thin compared
to the spatial scale of lateral variations in the forcing. The net buoyancy and tracer
transports by a plume ensemble may differ from those of an isolated element due
to interactions between individual elements, yet such ensembles have received little
attention thus far. We examine the plume ensemble in numerical solutions of turbulent
Rayleigh–Bénard convection, a canonical example of distributed turbulent plume
convection, relevant to many geophysical and astrophysical convection scenarios.
Plumes are emitted from both upper and lower surfaces of a fluid layer, held at a
fixed destabilizing temperature difference. The statistically steady state achieved allows
us to identify large numbers of plumes over a long period of time, providing more
accurate plume statistics than a time-dependent convecting layer. We concentrate
on cases where rotation is strong relative to the buoyancy forcing and compare
with non-rotating solutions, in order to identify the role of rotation in the ensemble
dynamics. Rotating convection is particularly relevant to geophysical scenarios when
the time scale for buoyant elements to traverse the layer is long compared to the
inertial period. Our previous work has demonstrated several interesting and important
characteristics of low Rossby number convection: the persistence of finite negative
temperature gradients, lateral mixing generated by the interaction between cyclonic
vortices associated with plumes (Julien et al. 1996a), less efficient kinetic energy
transport and inhibited penetrative convection (Julien et al. 1996b). Here we will
further examine these numerical solutions to quantify the plume structures responsible
for these features.

The existence of plumes and their properties in turbulent convection has previously
been inferred from examination of their effects on the global transport properties
(e.g. the heat flux in the plume-dominated ‘hard turbulent’ regime of high Rayleigh
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number convection (Castaing et al. 1989)). Detailed studies of the budgets of isolated
plumes have been carried out in laboratory and numerical investigations (see List 1982
for a review, and Papanicolaou & List 1988 for recent developments). However, the
structure of plumes within an ensemble remains difficult to diagnose, the individual
elements being elusive and transient, and thus far only geometric properties of plumes
(i.e. plume radius) have been identified in distributed forcing scenarios (Maxworthy &
Narimousa 1994; Jones & Marshall 1993). Here we will extract the plume structures
directly from our previous numerical solutions of turbulent convection, and new
simulations using different parameter values, allowing us to evaluate the transport and
mixing of properties effected by these structures, as well as their geometric properties.
We are motivated in our study by the need for models or parameterizations of
convective mixing. Circulation in the oceans, atmospheres, giant planets and stars
depends crucially on the convectively driven transports of heat and tracers, yet the
scales at which such transports occur are too small to be explicitly modelled if the
largest scales are to be captured. Hence, despite increasing computing power, the
development of parameterizations remains a fundamental necessity for simulations of
these large-scale systems.

We begin by describing the present understanding of turbulent plumes, focusing in
particular on the concepts of entrainment and mixing and discussing their modifica-
tion by strong rotation. Following from these previous studies we outline a modified
version of an entraining plume model, incorporating ensemble interactions, to which
our solutions will be compared. We then discuss techniques for identifying the co-
herent structures from the turbulent flow fields, and describe our own method in
detail. The structures identified from several different solutions are compared with
the entraining plume model, allowing the balances of mass, momentum, and heat to
be evaluated. The influence of rotation, Reynolds number and momentum boundary
condition in determining the plume transports are quantified.

Our new results include a reduction in net acceleration of rotating plumes, due to
both loss of momentum through entrainment and mixing, and a pressure gradient
in partial hydrostatic balance with the buoyancy acceleration. Like many previous
studies of rotating convection, we find a suppression of plume expansion through
entrainment at low Rossby numbers. Our most significant new result, found by
evaluation of the heat budget, is the presence of continued mixing as a result of
the plume-ensemble generated turbulence which erodes the plume buoyancy in the
rotating case, but is absent in the non-rotating case. Since both rotating and non-
rotating cases are equally turbulent, this mixing must result from the enhanced
lateral motions generated through vortex dynamics in the rotating scenario. This
conclusion is supported by observations of large deviations from axisymmetry in
rotating plumes, but not in non-rotating plumes. We parameterize this mixing by
use of a mixing coefficient, which we find is approximately constant over much of
the layer and independent of Reynolds number. Since the turbulence which causes
this mixing is generated by the convecting plumes themselves, as is often the case in
geophysical scenarios, this mixing coefficient may provide a general parameterization
of plume-ensemble interactions in rotating convection. The loss of buoyancy by mixing
leads to a reduction in the total heat transport carried by upward moving plumes
across the layer in the rotating case. By contrast, the total heat transport carried by
upward plumes in non-rotating convection is approximately constant across the layer.
(The heat flux carried by downward moving plumes varies in an identical fashion
descending through the volume; these Boussinesq solutions are statistically symmetric
about the mid-plane.) The reduction in acceleration of the plumes caused by dilution
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of buoyancy, loss of momentum due to mixing and pressure gradient deceleration,
leads to a reduction in the conversion of potential energy to kinetic energy as Rossby
number is reduced.

In the present study we ignore many additional features which are present in some
of the circulation systems described above: for example, the interaction of plumes with
a region of stable stratification, the effects of compressibility and the role of water
vapour in atmospheric convection. While such effects are important components of
an eventual parameterization scheme, here our emphasis is the modification of plume
transports by ensemble interactions and rotation.

2. Buoyant plume models
2.1. The entrainment hypothesis

A turbulent buoyant element expands at the expense of the quiescent surrounding
fluid through the entrainment of exterior fluid (Morton, Taylor & Turner 1956). This
engulfment of exterior fluid by organized structures within the buoyant flow (Papan-
toniou & List 1989), accompanied by a mixing of ambient tracers and enlargement of
the parcel, can be represented by an effective entrainment velocity ve across the parcel
bounding surface, defined as the average rate of parcel expansion:

ve =
(d/dt)V

S
, (2.1)

where V is the parcel volume, S is the surface area across which entrainment occurs,
and d/dt is the Lagrangian derivative. Assuming plume tracers are modified only as
a result of entrainment into the enlarging turbulent parcel, the parcel motion can be
described by

d

dt
V = veS ,

d

dt
VW = Vg′,

d

dt
VT = veTES, (2.2a–c)

where TE is the temperature of entrained fluid, g′ is the parcel buoyancy anomaly, W is
the vertical velocity, and T is the parcel temperature. (Note that here and throughout
the text we use ‘anomaly’ to refer to a deviation from the horizontally averaged mean
profile.) An overbar represents the average over the parcel, X = (1/V )

∫
V
XdV ′. If

ve = 0 (an isolated bubble) and a linear relationship between g′ and T is specified
(e.g. g′ = gε(T − T0), where ε is the coefficient of thermal expansion, and T0 is
the horizontally averaged temperature), a solution for a parcel in a homogeneous
environment is

W = gε(T − T0)t = (2zgε(T − T0))
1/2, (2.3)

the free-fall velocity.
Solutions to the coupled system of equations can be obtained if ve 6= 0 by invoking

the entrainment hypothesis (Morton et al. 1956), which states that the entrainment
velocity is proportional to the vertical velocity:

ve = αW, (2.4)

where α is a constant, known as the entrainment constant. In addition, a self-similar
shape for the element and particular form of forcing must be prescribed.

The steady plume model (Turner 1986) results if the buoyant flow is sustained
by a continuous source of buoyancy, with entrainment only through the horizontal
bounding surface and no time-dependence. Then the Lagrangian derivative above is
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replaced by the vertical flux gradient (d/dz)W . For a circular plume in a homogeneous
fluid forced by a point source with buoyancy flux F0, solutions for the radius r, vertical
velocity W and buoyancy anomaly g′ are

r ∼ αz, W ∼
(
F0

α2z

)1/3

, g′ ∼
(
F2

0

α4z5

)1/3

, (2.5)

where z is the vertical distance from the source.
The isolated thermal model results if a buoyant parcel is instantaneously released,

without further forcing, and entrainment occurs over the whole surface. For a spherical
shape, initial buoyancy Vg′ = Q, and homogeneous environment

r ∼ αz, W ∼
(

Q

α3z2

)1/2

, g′ ∼ Q

α3z3
. (2.6)

Both solutions could be obtained from dimensional analysis, assuming self-similar
evolution. The use of the entrainment hypothesis and buoyant parcel evolution
equations is unnecessary in this case, but in more complicated scenarios such as
a plume in a stably stratified environment these equations enable solutions to be
obtained (see Emanuel 1994, chapter 1 for numerous examples). Results compare
well against observations, demonstrating the utility of the entrainment hypothesis
for isolated elements. We intend to investigate the application of the entrainment
hypothesis to plume ensembles. Actual convection elements are neither supplied
continuously with a source of buoyancy nor released instantaneously, being instead
supplied with buoyancy for a finite period of time before detaching from the boundary.
We will therefore use the term ‘plume’ to describe any convection element, not just
those with a steady source of buoyancy.

2.2. Rotation and entrainment

Several recent studies of isolated thermals and plumes under the influence of rotation
suggest that the expansion of the element by entrainment can be suppressed when
the local Rossby number Ro l = u/(fl) satisfies the condition Ro l < 1 where u is the
velocity scale, f is the Coriolis force and l is the horizontal length scale of the element
(Helfrich 1994; Ayotte & Fernando 1994; Fernando & Ching 1993). If the values for
u ∼ W and l ∼ r are inserted from the thermal evolution equations above, then the
radius lrot at which this rotational influence occurs is

lrot ∼
(
Q

f2

)1/4

, (2.7)

in agreement with laboratory experiments (Helfrich 1994). However, despite the dra-
matic reduction in expansion when Ro l < 1, the vertical velocity appears unaffected by
rotation (Helfrich 1994; Fernando & Ching 1993), contrary to what is predicted from
the momentum equation in the absence of entrainment. Possible factors ignored in the
self-similar plume and thermal models may be responsible: changes in shape or the
modification of vertical acceleration by other terms (apart from buoyancy anomaly),
for example pressure drag. An analytical investigation (Bush, Stone & Bloxham 1992)
shows that the pressure gradient induced by strong rotation across a buoyant parcel
without entrainment can completely balance the buoyancy acceleration. The role of
pressure drag in the turbulent case has however not yet been quantified.
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2.3. Plume ensembles

In the ocean and atmosphere, only a small number of convective features can be
described as isolated plumes or thermals (e.g. chimney smoke plumes, hydrothermal
vents, waste outflows). Most naturally occurring convection is in the form of ensembles
of plumes generated by a distributed buoyancy source (or sink) located at a boundary
(Narimousa 1996), introducing several new issues absent from the isolated plume
problem: the area between plumes is finite, so that from continuity there must be a
return flow between plumes which in turn modifies the environment; the flux of heat
into each plume is not known, and may vary with time; the lifetimes of individual
plumes are finite and unknown; there may be interactions between plumes (see
Ching, Fernando & Davies 1996 for examples of interactions and mergers between
two plumes).

Because of these complications, predictions of plume horizontal length, vertical
velocity and buoyancy scales have been made through dimensional analysis (e.g.
Deardorff 1970), rather than explicit use of the plume equations, giving

r ∼ z, W ∼ (Bz)1/3, g′ ∼ (B2/z)1/3 (2.8)

(where B is the buoyancy flux per unit area: B = (gεH)/(ρ0Cw) where H is the
surface heat loss per unit area, ρ0 is a reference density and Cw is the fluid specific
heat capacity).

As in the single plume and thermal experiments with strong rotation, plume
expansion by entrainment is suppressed when the local Rossby number is smaller
than a critical value (Fernando, Chen & Boyer 1991; Maxworthy & Narimousa
1994; Jones & Marshall 1993). Using (2.8) to estimate W and r we find the radius
(proportional to the depth) at which Ro l ≈ 1:

lrot ∼
(
B

f3

)1/2

. (2.9)

Maxworthy & Narimousa (1994) and Jones & Marshall (1993) suggest that g′ and
W must henceforth be independent of depth. A suppression of plume acceleration
is then implied, to counteract the continuing buoyancy forcing, but the mechanisms
responsible have not been investigated.

2.4. Detrainment and mixing with the environment

As well as entraining fluid from the environment, a plume may also lose fluid to
the environment (detrainment) or mix properties with the environment without any
net change in volume. Priestley (1953) first proposed an ‘open parcel’ model of a
plume as a buoyant parcel of constant volume which continuously exchanges heat
and momentum with the environment. Then instead of (2.2) we have

d

dt
V = 0,

d

dt
VW = Vg′ − k1SW,

d

dt
VT = −k2S(T − TE), (2.10a–c)

where k1 and k2 are turbulent transfer coefficients, representing the rates at which
momentum and heat are mixed with the environment. While Priestley examined the
properties of plume solutions, and their dependence on the coefficient k1 and k2, the
value of these coefficients in geophysical convection scenarios was not determined.

Turner (1963) combined the entraining plume with the concept of environmental
mixing by introducing detrainment, allowing fluid and plume properties to be lost to
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the environment. Then the parcel equations (2.2) become

d

dt
V = (ve − vd)S, d

dt
VW = Vg′ − SvdW ,

d

dt
VT = veTES − vdTS, (2.11a–c)

where vd is a detrainment velocity. Note that this model reduces to Priestley’s model
if ve = vd = k1 = k2. Turner considered solutions where vd resulted from externally
generated turbulence, and showed that it was proportional to the r.m.s. velocity of
such turbulence. Turner did not however consider a turbulent convection ensemble as
a source of environmental turbulence, or examine the detrainment velocity or mixing
coefficient in this case.

2.5. Plume-based parameterization schemes

Numerous parameterizations of atmospheric cumulus convection, originating with
Arakawa & Schubert (1974), are based on the entraining plume model. Collectively
known as mass-flux schemes, they assume the ensemble of plumes behaves much
as a collection of isolated plumes. Each grid cell is assumed to contain several
plumes, with a distribution of sizes and strengths (and hence effective entrainment
rates). Closure schemes are used to determine the initial mass and buoyancy flux at
the convective-layer base, invoking for example a large-scale statistical equilibrium
(Arakawa & Schubert 1974) or minimization of available potential energy (Fritsch
& Chappell 1980). An additional feature of many of these schemes is detrainment or
loss of fluid from the plume, either when it reaches neutral buoyancy, as in the two
above schemes, or at a constant rate proportional to the entrainment rate (Tiedtke
1989; Gregory & Rowntree 1990). More recent variations on these schemes involve
partial mixing with the environment (Kain & Fritsch 1990; Hu 1997), and vertical
momentum budgets (Donner 1993). The actual rates of entrainment and detrainment
have not been determined explicitly from observations or simulations of detraining
plumes.

Recently atmospheric mass-flux schemes have been modified to parameterize ocean
convection, with sea-water properties substituted for those of air and water vapour
(Paluskiewisz & Romea 1997; Alves 1995). Neither scheme includes the possibility of
modification of entrainment at the low Rossby numbers often found in deep ocean
convection or has been compared with actual numerical simulations or observations
of plume structures.

2.6. A theoretical framework for examination of plume ensemble dynamics

While the dynamics of a single steadily forced plume or instantaneously released
thermal appears to be well-described theoretically by the entrainment model, many
questions remain regarding the behaviour of an ensemble of plumes and the influence
of rotation on the ensemble dynamics:

What are the mass and buoyancy fluxes of a plume within the ensemble?
What is the vertical momentum balance for a plume within the ensemble?
What are the entrainment and detrainment behaviours of plumes?
What are the distributions of plume characteristics within an equilibrium ensemble?
What are the effects of plume interactions and environmental rotation?

We will examine these questions in the context of the entraining/detraining parcel
model, adapted from Turner’s model (2.11) above:

dV

dt
=

∮
S

vedS
′, (2.12a)
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dVW

dt
= −V ∂P

′

∂z
+

∮
S

wvedS
′ −
∮
S

wU · dS ′ + Vg′ + Vν∇2W, (2.12b)

dVT

dt
=

∮
S

TvedS
′ −
∮
S

TU · dS ′ + Vκ∇2T . (2.12c)

V is the parcel volume, and S is the bounding surface of the volume. P is the pressure,
normalized by dividing through by ρ. We have subtracted the mean temperature field

from both buoyancy and pressure terms so that ∂P ′θ/∂z = ∂P
θ
/∂z − gεT0, where

θ

denotes azimuthal average and T0 is the horizontally averaged temperature. Here we
have associated a term

∮
S
veQdS ′ with the change of a quantity Q associated with a

change in volume. This could be entrainment ve > 0 or detrainment ve < 0. Another
term − ∮

S
QU · dS ′, which we will hereafter refer to as the exchange term, represents

the change in the quantity Q due to exchange between the plume and environment,
without any changes in volume (as in Priestley’s model for example). Therefore ve
is associated with the velocity of the plume bounding surface, while U is associated
with velocity across that surface. Note several differences between these equations and
(2.11), in addition to the slightly different distinction between entrainment and mixing.
First, we include −(∂/∂z)P ′, the anomalous vertical gradient of pressure across the
thermal in (2.12b), as suggested by the analytical study of Bush et al. (1992). Secondly,
we include entrainment of momentum through

∮
S
wvedS

′ in (2.12b), since in a plume
ensemble entrained fluid may also have significant momentum (e.g. from a plume
moving in the same or opposite direction). Thirdly, the entrainment velocity ve is not
assumed to be uniform over the whole surface of the parcel, and hence appears inside
the integral. Finally, we include the effects of diffusion and friction through the terms
κ∇2T and ν∇2W . By evaluating the left-hand sides and buoyancy, pressure-gradient
and frictional terms directly, we intend to deduce the entrainment and exchange terms.
All interaction between the parcel and its environment (and hence with the turbulence
generated by other plumes) is included in these two terms. Hence if these terms can
be parameterized in terms of the prognostic quantities, the transports effected by
the plume ensemble can be represented. The entrainment hypothesis ve = αW is one
example of such a parameterization: we will investigate whether the exchange term
can be represented by an exchange velocity ux = αxW , for example, (where αx is a
constant) and investigate its dependence on rotation rate, and on other properties
of the convecting ensemble (e.g. Reynolds number). Note that the entrainment and
exchange terms have opposite signs: an expanding plume (ve > 0) is equivalent to
fluid flowing into the plume (Ur < 0). In addition to evaluating the entrainment and
exchange terms, we will examine the importance of the pressure-gradient term and the
dominant balances acting on the plumes. Our plumes will be extracted from solutions
of turbulent rotating and non-rotating Rayleigh–Bénard convection described below.

3. Turbulent rotating convection: summary of previous results
We have carried out a series of high-resolution numerical simulations of turbulent

Rayleigh–Bénard convection under the influence of strong rotation. Parameters of
the sub-set of these simulations which we will consider in this study are described
in table 1. Results of calculations at constant convective Rossby number (defined as
Roc = (Ra/(σTa))1/2 = 0.75) were described in Julien et al. (1996a). These calculations
were performed at increasing Rayleigh number, up to a maximum of Ra = 1.78×108,
to our knowledge the highest performed in three dimensions. The numerical model,
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Rayleigh Taylor Supercriticality Rossby
number number (Ra− Rac)/Rac number Domain size Resolution Boundary

Run Ra Ta S Roc Lx × Ly × Lz nx× ny × nz conditions

1 2.81× 107 5.00× 107 28.43 0.75 4× 4× 2 192× 192× 97 no-slip
2 2.53× 106 4.50× 106 12.27 0.75 4× 4× 2 128× 128× 65 no-slip
3 5.63× 107 1.00× 108 28.65 0.75 4× 4× 2 256× 256× 129 free-slip
4 5.63× 106 1.00× 107 12.56 0.75 4× 4× 2 192× 192× 97 free-slip
5 4.096× 107 4.55× 108 8.64 0.3 4× 4× 2 256× 256× 129 no-slip
6 1.024× 107 0 1024 ∞ 12× 12× 2 512× 512× 97 no-slip

Table 1. Details of the different solutions for which the plumes are analysed.

described in more detail in Julien et al. (1996a), integrates the three-dimensional
incompressible Boussinesq equations, using a pseudo-spectral decomposition in all 3
directions. The number of spectral modes required at a particular Ra is determined
by the relevant Kolmogorov scale at each Ra, so that all dynamically active scales are
resolved. We found that for constant Roc, a scaling regime for the non-dimensional
convective heat flux was achieved at high Ra, such that Nu ∼ Ra2/7 for no-slip
upper and lower boundaries, and Nu ∼ Ra1/3 for stress-free boundaries. The no-
slip result is identical to that found for non-rotating turbulent convection (Heslot,
Castaing & Libchaber 1987). However, other quantities show significant differences
from non-rotating convection. In particular, with rotation, even at asymptotically
high Ra, a finite vertical gradient in the horizontally averaged temperature persists
in the convective layer, as in Fernando et al. (1991) and Klinger & Marshall (1995).
We have suggested that this temperature gradient is a consequence of plume–plume
interactions induced by the cyclonic vortices associated with plumes in the presence
of rotation, which diminish the buoyancy transports of the plumes by introducing an
efficient lateral mixing mechanism. To examine in more detail the plume evolution of
these solutions, we will examine the budgets of plumes identified from four of the
solutions described in our earlier work. These solutions are identified as runs 1 to
4 in the table. For each type of boundary conditions we include two simulations at
different Ra, so as to examine the influence of increasing Reynolds number on the
plume dynamics. To examine the influence of rotation on the plume dynamics we also
include one simulation with Roc = 0.3 (run 5) and one without rotation (run 6) in
the present study. Both of these calculations have Ra > 1× 107, as in the higher-Ra
Roc = 0.75 simulations, so that turbulence is equally well developed.

In addition to examining the role of plume dynamics in determining the temperature
gradients, we will also examine the plume budgets of momentum and consequences
for kinetic-energy transport. Our previous studies of the influence of rotation on
penetrative convection (Julien et al. 1996b) have shown that a reduction in kinetic-
energy transport at strong rotation leads to a reduction in reverse buoyancy flux in the
stratified region bounding a convective layer. Here we will examine plume processes
responsible for the kinetic-energy transport reduction.

4. Coherent structure identification
We extract the thermal plume structure from the full flow field by employing a con-

ditionally sampled compositing technique. The state vector for a typical flow structure
is obtained by compositing all those sample structures which satisfy a predetermined
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selection criterion (e.g. updraughts or downdraughts: Schumann & Moeng 1991;
Schmidt & Schumann 1989). Attention is focused on a localized region by restricting
the size of sample state vectors relative to the full state vector of the flow field. An
alternative coherent structure identification technique is the proper orthogonal de-
composition (POD) (Lumley 1971; Berkooz, Holmes & Lumley 1993), which obtains a
series of characteristic functions describing principal structures of the flow by calculat-
ing the eigenvectors of the ensemble-averaged covariance matrix. While POD identifies
preferred global patterns of variability (Aubrey et al. 1988), it is inadequate to identify
highly localized plume or vortex structures (Wilson 1996). An intermediate method
conditionally samples to obtain samples focused on a small spatial extent and then car-
ries out a POD. However, the results are almost identical to the conditionally sampled
composite, provided one pattern dominates the samples, yet require considerably more
effort to obtain. Hence conditional composites appear to be the method best suited
to the identification of localized structures such as plumes; this is the approach we
pursue.

The composite structure can be highly sensitive to the selection threshold (Yuan
& Mokhtarzadeh-Dehghan 1994); we will use a two-step process to reduce this
dependence. We intend to focus on the plume evolution or life-cycle and therefore
separate the samples in terms of their age or height in the convecting layer, in contrast
to previous studies of the coherent structures of convection.

To identify plumes we first recognize that a plume is associated with a distinct
signature in both vertical velocity and temperature fields – a hot updraught or a cold
downdraught – and also in the vorticity field for convection with ambient rotation.
Three fields therefore form our plume state vector: vertical velocity W , temperature
anomaly T − T0(z) (where T0 is the horizontally averaged temperature) and vertical
vorticity ω3. Since in Boussinesq Rayleigh–Bénard convection there is a symmetry
between updraughts and downdraughts, plume structure can be adequately studied
by focusing on plumes travelling in one direction only. Hence we concentrate on hot
updraughts. Interaction between plumes travelling in the opposite direction will be
inferred from the plume budgets.

An initial identification of plumes is made using a strong selection criterion in
one field F (where F represents one of temperature, vertical velocity, or vertical
vorticity): a three-dimensional local maximum combined with a value F > ΓFrms
where Γ is a constant and Frms is the root-mean-square value. The location of such a
maximum in F is the plume centre. The local plume state vector Y (n) is constructed
by azimuthally averaging the fields about the plume centre, over a radius Lx/6 and
a depth Lz/4, equally distributed above and below the centre. (Lx and Lz are the
horizontal and vertical extents of the computational domain, with Lx = 2Lz for most
of our calculations.) The plume state vectors with plume centres at the same vertical
level are then combined to obtain the composite azimuthally averaged plume:

〈Y 〉(z) =
1

N1(z)

N1(z)∑
n

Y n(z), (4.1)

where N1(z) is the total number of plumes identified at the vertical level z over all
time for which data are available.

We now repeat the conditional sampling with a greatly relaxed selection criterion
– a horizontal maximum in F and a much lower threshold value of F (e.g. F > 0).
Large numbers of plumes are selected in this way. Each azimuthally averaged state
vector X (n) is compared with the previously calculated composite plume 〈Y 〉 at the
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same vertical level z by calculating the normalized scalar product γn where

γn =
〈Y 〉 · X n

(〈Y 〉 · 〈Y 〉)1/2(X n · X n)1/2
. (4.2)

If γn > γk where γk is a predetermined threshold value, X n is retained in the subset for
further compositing. In this way a subgroup of plumes is created, selected by their
structure (i.e. correlation between fields or spatial distribution of anomalies) and not
by amplitude.

Since a typical plume has several local horizontal maxima in F (due to both the
finite vertical extent of the plume and the small-scale structure within the plume),
there will be considerable redundancy. This redundancy is eliminated using a further
selection criterion: the relative distance between plumes in the vertical zi,j = |z(i)−z(j)|
and horizontal ri,j = ((xi − xj)2 + (yi − yj)2)1/2 where (xi, yi, zi) are the plume centre
coordinates i (as selected by the F > 0 criterion). If ri,j < Rk and zi,j < Zk where
Rk and Zk are predetermined threshold values, the plume centres correspond to local
maxima in the same structure. Only the structure with the greater value of γn is
retained for further compositing.

Finally, having made the plume selection by the three above criteria – local
horizontal F maximum, comparison with the previous composite 〈Y 〉, and spatial
separation from other plumes – we combine all plumes found at the same z level, to
generate a new composite:

〈X〉(z) =
1

N2(z)

N2(z)∑
n

X n(z), (4.3)

where N2(z) is the total number of plumes which satisfy all three criteria above. At
this stage, in addition to the three fields used in the selection process, we evaluate
all other fields and their correlations, and evaluate the composite plume fields over
the whole fluid depth, rather than the restricted depth range used to determine the
selection of individual plumes. Our final result is independent of the original selection
threshold value Γ . We stratify the structures by vertical level, so that the evolution in
structure as an intermittent plume traverses the volume can be identified.

Here we describe the sensitivity of the final composite structure to the adjustable
parameters: F , the field to which the selection criterion is applied; Γ , the threshold
value of this field (compared to the r.m.s.); γk , the threshold value of the state-
vector dot product with the first composite; and Rk and Zk , the minimum horizontal
and vertical separation respectively. We calculated composites using vertical velocity,
temperature and vertical vorticity as the selection criteria F , and varying Γ , the
threshold value. The resultant composite plumes were then compared by calculating
the normalized scalar product of the plume state vectors a · b/((a · a)1/2(b · b)1/2).

The choice of vertical velocity or temperature anomaly maxima as the selection
field makes little difference to the resultant plume structure, with a normalized scalar
product of greater than 0.9. Vertical vorticity reverses sign as the plume traverses the
box, so a vertical vorticity maximum criterion only produces good agreement with
the other selection criteria in the lower part of the volume. The structure shows little
sensitivity to the value of Γ , although larger values reduce the number of plumes
in the sample. Temperature as a selection criterion also results in fewer plumes than
vertical velocity. For this reason, vertical velocity maxima, with a threshold value
of Γ = 1 were chosen for production. There is minimal sensitivity to the choice of
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Figure 1. The p.d.f. of the normalized scalar product γn between all plumes identified by a
local horizontal maximum in w, with w > 0, and the first composite plume. Roc = 0.75,
(Ra − Rac)/Rac = 28.43, no-slip boundary conditions.

threshold in the second step, where F > 0 is used, since the choice of γk and Rk and
zk are the controlling parameters in this stage.

The probability density function of γn for all the plumes found by the weak F > 0
and local maximum threshold shows a peak at higher values, of around 0.8 for all
solutions (figure 1). We chose to use γk = 0.7 in order to include all the plumes within
this peak, and therefore the most typical structures of the ensemble.

The number of plumes selected depends little on the vertical cutoff distance Zk ,
once it is greater than a few grid points. As the horizontal cutoff distance Rk is
increased, the isolated plumes tend to show higher correlations with the ideal – a
compromise distance is chosen by examining the average width of plumes in each
simulation and using this plume width to specify Rk .

5. Results
We have extracted plumes from the different solutions described in table 1, allowing

us to examine the sensitivity of plume structure to three different parameters: the
Reynolds number Re = wl/ν; the convective Rossby number Roc = (Ra/(Ta Pr))1/2

and the momentum boundary conditions at the upper and lower surfaces. We examine
in particular Roc = ∞, 0.75 and 0.3 and no-slip and stress-free boundary conditions.
By examining the momentum, heat and mass budgets of rotating plumes and com-
paring with the non-rotating case, we will show the following: rotating plumes are in
gradient-wind balance, but not in hydrostatic balance; entrainment rates are rapidly
suppressed in rotating plumes; modification of properties of rotating plumes is af-
fected by exchange with the environment, with no volume changes; and acceleration of
rotating plumes is suppressed, as the buoyancy forcing is balanced by a combination
of pressure gradients and loss of momentum to the ambient flow.

5.1. Typical plume structure in rotating convection:
fields and Eulerian budgets for run 1

We first examine the structures from one solution in the Eulerian frame to identify
the dominant balances in the plume flow: e.g. the possibility of geostrophic and/or
hydrostatic balance, and the relative important of advective versus diffusive transports.
This solution has an a priori convective Rossby number (Julien et al. 1996a) of Roc =
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Figure 2. The vertical velocity, vorticity, temperature and azimuthal and radial velocity fields for
the azimuthally averaged composite plumes centred at heights (a) Lz/8, (b) Lz/2 and (c) 7Lz/8
above the bottom boundary. Roc = 0.75, (Ra − Rac)/Rac = 28.43, no-slip boundary conditions.
Contour intervals are: ∆W = 38.5κ/L, ∆ω = 0.35f, ∆T = 1/15δT , ∆U = 22.2κ/L, where κ is the
diffusivity, 2L is the layer depth, f is the planetary rotation, and δT = (Tbottom −Ttop)/2 is half the
temperature difference across the layer. In this and subsequent contour plots, positive values are
shown by solid contours and negative values by dotted contours.
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(Ra/(Ta Pr))1/2 = 0.75, where Ra is the Raleigh number, Ta is the Taylor number,
and Pr is the Prandtl number. This solution (run 1 in table 1) has supercriticality
(Ra − Rac)/Rac = 28.43, where Rac is the critical Raleigh number for convection to
occur at this value of Ta (Chandrasekar 1961) and lies in the turbulent scaling regime.
Momentum boundary conditions at top and bottom are no-slip. Figure 2 shows the
vertical velocity W , temperature T and vertical vorticity ω3 of the azimuthally
averaged composites, over the full depth of the volume. Since the selection of plumes
was determined using the fields over a limited depth, less weight should be placed
on those features far above or below the plume centre. Fields at large radii from the
plume centre also tend to be noisier, as variability within the ensemble of samples
is most evident here. Hence the reader should focus attention principally on features
near the plume axis.

We show the full temperature field, as opposed to the temperature anomaly T −T0

used in the selection process, since the full temperature field is necessary for calculation
of heat budgets. The vertical velocity maximum is associated with a warm temperature
anomaly. Plumes close to the bottom boundary layer are associated with a strong
cyclonic vortex, located slightly below the velocity maximum. At higher levels, the
strength of this vortex diminishes, and the anticyclonic vorticity component above the
vertical velocity maximum increases, as divergence of the flow dominates. Detachment
of the plume from the boundary and localization of the structure in the vertical are
indicated in both vertical velocity and temperature fields. However, this apparent
localization may result from the tilt of plumes away from vertical alignment, and
should not be taken to indicate that parcels are completely isolated from their source
at the bottom boundary. If plumes are tilted from the vertical, azimuthal averaging
may lead to a spurious impression of detachment from the boundary – this tilt is
quantified in a later section.

The azimuthal velocity field is baroclinic, reversing flow direction at about the level
of the plume (figure 2) like the vorticity signal. There is radial inflow below the plume
and outflow above. Inflow is especially strong when the plume is close to the lower
boundary, with similarly strong outflow near the upper boundary. Since the azimuthal
velocity and vorticity fields are generated by the movement of fluid before and after
the thermal, they are less localized in the vertical than other fields.

5.1.1. Momentum budget

We examine the relative importance of the terms in the azimuthally averaged
vertical momentum budget

∂

∂t
W

θ
= − ∂

∂z
P ′θ − ∇ · (UW )

θ
+ g′θ + ν∇2W

θ
, (5.1)

where
θ

is the azimuthal average. If the plume is in hydrostatic balance then the

pressure gradient and buoyancy terms will cancel. In figure 3 we show g′θ = gεT ′θ ,
−(∂/∂z)P ′θ and their residual g′θ − (∂/∂z)P ′θ . Deviation from hydrostatic balance is
largest in the boundary layers, where the mean pressure gradient is balanced by inertial
terms. However, in the region of the plume, the pressure gradient partially compensates
the buoyancy anomaly. This pressure deceleration reduces the net acceleration of the
plume. The buoyancy forcing dominates however so this hydrostatic balance is not
complete.

Figure 3 shows that the residual buoyancy forcing is small compared to the
vertical advection. Frictional drag is small compared to all other terms in the vertical
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Figure 3. The pressure gradient, buoyancy, advective, and diffusive components of the vertical
momentum budget for plumes centred at heights (a) Lz/8, (b) Lz/2 and (c) 7Lz/8 above the bottom
boundary. (i) −∂P ′/∂z, (ii) g′ = gε(T − T0), (iii) g′ − ∂P ′/∂z, (iv) (∂/∂z)(W 2) + (1/r)(∂/∂r)(rUrW ),
(v) ν∇2W , (vi) Residual = g′ − ∂P ′/∂z + ν∇2W − (∂/∂z)(W 2) + ((1/r)(∂/∂r)(rUrW )) = ∂W/∂t.
Contour interval = (i–iii) 117 000 κ2/L3, (iv) 148 000 κ2/L3, (v) 59100 κ2/L3.

momentum balance and confined to the plume axis. In the boundary layer pressure
gradients are balanced by the advection terms. In the plume area the dominance of
the advection terms leads to an acceleration ahead of the plume, with deceleration
behind. In this Eulerian frame it is difficult to identify any changes in the parcel
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momentum itself which could be caused by entrainment of ambient fluid, since these
are masked by the parcel advection.

5.1.2. Heat budget

A similar examination of the relative importance of the terms in the azimuthally
averaged heat budget

∂

∂t
T
θ

= −∇ · (UT )
θ

+ κ∇2T
θ

(5.2)

shows that radial inflow fluxes heat into the plume, while the outflow transports heat
outwards (figure 4), leading to warming below the plume and cooling above in lower
layers. Along the upper boundary, the radial flow leads to a net warming. Vertical
transports by contrast lead to cooling below the plume and warming above the plume,
until close to the upper boundary, when the vertical heat fluxes become negligible.
The vertical transports dominate, so the net advective effect is cooling below the
plume and warming above, consistent with the upward transport of a localized warm
anomaly. Near the boundaries, diffusion balances advection, but within the plume
core the diffusive cooling is comparatively small. Net changes in the plume-area
temperature field are therefore dominated by advection. As in the momentum budget,
it is not possible to identify changes in the parcel heat content induced by entrainment
in this Eulerian frame.

5.1.3. Gradient-wind balance

If the azimuthally averaged fields are in gradient-wind balance, then

∂P ′θ

∂r
= fuθ

θ +
u2
θ

θ

r
, (5.3)

making no assumptions about hydrostatic balance, since we have shown this does not
hold (and therefore not assuming ‘thermal wind balance’, which uses the hydrostatic
relation to substitute for pressure in terms of temperature in the vertical derivative
of (5.3)). Figure 5 shows that in the interior of the volume the pressure gradient is
approximately balanced by the Coriolis and centrifugal terms (with the centrifugal
term typically about 20% the magnitude of the Coriolis term). Significant deviations
from gradient-wind balance occur only in the Ekman boundary layers where radial
inflows (at the bottom boundary layer) or outflows (in the top boundary layer) are
generated.

5.2. Lagrangian plume budgets: comparisons between different simulations

In the Eulerian frame we found that the convection elements are somewhat localized in
the vertical, and in gradient-wind balance with partial hydrostatic balance between the
buoyancy and pressure gradient anomalies (although the buoyancy forcing always
dominates). Advection dominates both the heat and momentum budgets in the
Eulerian frame. The Lagrangian frame of reference moving with the parcel allows us
to separate the modification of heat and momentum by entrainment and mixing from
parcel advection. We will therefore compare plume budgets in different simulations
within the Lagrangian frame indicated in (2.12a–c).

5.2.1. Plume shape and size

Our examination of the Lagrangian budgets may be simplified if the thermals
have self-similar shapes during their evolution. We therefore examine the vertical
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Figure 4. The advective and diffusive components of the heat budget for plumes centred
at heights (a) Lz/8, (b) Lz/2 and (c) 7Lz/8 above the bottom boundary. (i) (∂/∂z)(WT ),
(ii) (1/r)(∂/∂r)(rUrT ), (iii) (∂/∂z)(WT ) + (1/r)(∂/∂r)(rUrT ), (iv) κ∇2T , (v) Residual =
κ∇2T − ((∂/∂z)(WT ) + (1/r)(∂/∂r)(rUrT )) = ∂T/∂t. Contour spacing is (i), (ii), (iv) 101δTκ/L2,
and (iii), (v) 40.6δTκ/L2.
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Figure 5. The terms in the gradient-wind balance for plumes centred at heights (a) Lz/8, (b)
Lz/2 and (c) 7Lz/8 above the bottom boundary. (i) The radial pressure gradient, scaled by
the density (∂P/∂r)/ρ0, (ii) the Coriolis and centrifugal terms fuθ + u2

θ/r, and (iii) the residual
fuθ + u2

θ/r − (∂P/∂r)/ρ0. Contour interval = 75644 κ2/L3.

velocity shape in both radial and vertical directions, for run 1. Shown in figure
6(a) are comparisons between the velocity field at the central level of a plume
as a function of the radius, for all stages in the plume evolution. The velocity
field is scaled by its maximum value at the plume centre and compared with (a)
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Figure 6. The vertical velocity field W for all composite plumes in run 1 (each different plume-centre
height corresponding to a different dashed line), scaled by the maximum value W0 at that
plume-centre height. (a) W (r)/W0 as a function of scaled radial distance, r/lr , at the central
level of all composite plumes compared to a Gaussian function W = W0 exp(−r2/l2r ) (solid line);
(b) W (r)/W0 compared to an exponential function; W = W0 exp(−r/lr) (solid line); (c) W (z)/W0

along the vertical axis of the plume, as a function of scaled vertical distance z/lz compared to a
Gaussian function (solid line), where lz is estimated separately above and below the plume centre.

a Gaussian fit W0 exp(−r2/l2r ) where lr is estimated from the half-width distance,
lr = r1/2/(ln(2.0))1/2; and (b) an exponential fit W0 exp(−r/lr) where lr = r1/2/ ln(2.0).
The shape lies consistently between a Gaussian and exponential decay. A similar
pattern is found for the temperature field. Non-rotating isolated plumes show a
similar Gaussian radial profile (Papanicolaou & List 1988). In the vertical direction
(figure 6b), the decay of the vertical velocity field appears to be more Gaussian, but
different decay scales apply above and below the plume centre. Since the shapes are
relatively self-similar, but with length scales that vary both in z and in the spatial
direction from the plume centre, we will define the plume volume as that region
within the surface defined by the vertical velocity half-width, i.e. where W < W0/2.
The plume thus defined will have a shape which may vary with height. We do not
assume it to be spherical or ellipsoidal.

The self-similarity of the plume radial shape with height allows us to characterize
the fields by a measure of the decay scale in both horizontal and vertical directions,
and the averaged value over the volume defined by the three-dimensional decay
lengths. We choose r1/2, the distance at which the vertical velocity is equal to half of
its maximum, as the horizontal length scale, and h1/2 = z+1/2 − z−1/2, the difference
between the half-width distances above and below the plume centre, as the vertical
length scale.

Shown in figure 7 are the radius r1/2, and vertical length h1/2 for the different
solutions, as a function of the plume-centre height. The plumes have much greater
vertical extent than horizontal radius, with both increasing rapidly initially, indicating
enlargement of the plume by entrainment. However, in strongly rotating cases, over
the interior of the layer both vertical extent and radius remain approximately constant,
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Figure 7. The radius (diamonds) and length (triangles) of plumes for six simulations of different
Rossby number Roc, supercriticality S , and boundary conditions. (a) S = 12.27, Roc = 0.75, no-slip;
(b) S = 12.56, Roc = 0.75, stress-free; (c) S = 28.43, Roc = 0.75, no-slip; (d) S = 28.65, Roc = 0.75,
stress-free; (e) S = 8.64, Roc = 0.3, no-slip; (f) S = 1024, Roc = ∞, no-slip. These runs are identified
as runs 2, 4, 1, 3, 5, 6 respectively in table 1.

indicating a suppression of entrainment. In contrast, the non-rotating plumes continue
to expand with r ∼ z (as for isolated plumes, Papanicolaou & List 1988). The resultant
plume volume reflects this suppression of entrainment in rotating cases, and continued
expansion in the non-rotating case. This suppression of entrainment in rotating plumes
is shown in previous studies (Fernando et al. 1991; Maxworthy & Narimousa 1994;
Helfrich 1994), which suggest that entrainment is suppressed once the local Rossby
number is sufficiently reduced. To verify this hypothesis we calculate the local Rossby
number Rol = W/(f × 2r) where r is the thermal radius at the height of the thermal
centre (figure 8). The higher-Ra Roc = 0.75 solutions show a Ro l which is initially
> 1. Ro l then decreases (due to entrainment) to a value < 1, and close to the a priori
estimation of the convective Rossby number Roc, whereupon it remains constant
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Figure 8. The local Rossby number Ro l = W/(f2r) for five different simulations. (a) S = 12.27,
Roc = 0.75, no-slip; (b) S = 12.56, Roc = 0.75, stress-free; (c) S = 28.43, Roc = 0.75, no-slip; (d)
S = 28.65, Roc = 0.75, stress-free; (e) S = 8.64, Roc = 0.3, no-slip. These runs are identified as runs
2, 4, 1, 3, 5 respectively in table 1.

over the rest of the layer. This supports the hypothesis that entrainment is reduced
when Ro l < 1. The higher Rossby numbers in the boundary layers correspond to the
small plume radii in these regions: plume expansion then reduces the Rossby number.
Roc = 0.3 shows no boundary layer enhancement, perhaps indicating that the scale
at which rotation controls the flow and suppresses expansion is very close to the scale
at which plumes are ejected from the boundary layer.

5.2.2. Evaluation of balances

To evaluate the relative components of the Lagrangian budgets, we replace d/dt
by (d/dz)W since our composites are sorted by vertical height rather than time. We
then integrate the quantities WT , W 2, W , ∇2T , ∇2W , ∂P ′/∂z, and g′ over the volume
contained within the ellipsoid defined by the surface W = W0/2.0. Calculation of the
gradients of the first three quantities with plume height enables the missing terms in



172 K. Julien, S. Legg, J. McWilliams and J. Werne

(a) (b)

(c)

1.0

0.5

0

–0.5

–1.0
–0.5 0 0.5 1.0

1.0

0.5

0

–0.5

–1.0
0 2000 4000

1.0

0.5

0

–0.5

6 84

WT W 2

W
20

z

z

1.5 2.0

–1.0
10

Figure 9. Quantities integrated over the whole plume volume V as a function of height of the
plume centre, for Roc = 0.75, (Ra−Rac)/Rac = 28.43 and no-slip boundary conditions (run 1). Also
shown are the best fourth-order-polynomial fits to these quantities, from which the first derivatives

will be calculated. (a) VWT/(κδTL2), (b) VW 2/(κ2L), (c) VW/(κL2).

the conservation equations to be estimated. These quantities (VWT , VW 2 and VW )
are shown in figure 9 as a function of the plume-centre height, along with the best
fourth-order-polynomial fit, from which the first derivative is calculated (for run 1).
The polynomial fit is evaluated only in the interior, avoiding the boundary layers
where the plumes are formed and destroyed.

The heat equation

Terms in (2.12c) are shown in figure 10. In rotating cases, over much of the interior
the change in the vertical heat flux (d/dz)(VWT ) ≡ (d/dt)(VT ) is negative, implying
loss of heat as the parcel progresses in the vertical. This change is much greater
in magnitude than can be accounted for by the small loss due to diffusion. Since
entrainment is small in the interior (see below), exchange of heat with the surrounding
fluid, − ∮

S
TU · dS ′, must be responsible. In contrast, the vertical heat flux continues

to increase across the layer in the non-rotating case, with implications for the implied
exchange coefficient (see below).

The vertical momentum equation

The vertical momentum flux equation (2.12b) in figure 11 also shows significant
differences between the rotating and non-rotating cases. In rotating cases, the acceler-
ation (d/dz)(VW 2) ≡ (d/dt)(VW ) is greater than the buoyancy forcing Vg′ near the
bottom boundary, and smaller than the buoyancy term in the interior. In contrast, in
the non-rotating case, the net acceleration is larger than the buoyancy forcing through
much of the layer, decreasing only as the opposite side of the layer is approached.
With rotation, the reduction in acceleration over much of the layer is due in part to a
partial hydrostatic balance between the buoyancy anomaly and the vertical pressure
gradient anomaly (which is about 1/3 the magnitude of the buoyancy anomaly).
The rest of the deceleration is provided by the residual which we associate with
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Figure 10. The components of the Lagrangian heat balance for six simulations of different
Rossby number Roc, supercriticality S , and boundary conditions. (a) S = 12.27, Roc = 0.75,
no-slip; (b) S = 12.56, Roc = 0.75, stress-free; (c) S = 28.43, Roc = 0.75, no-slip; (d) S = 28.65,
Roc = 0.75, stress-free; (e) S = 8.64, Roc = 0.3, no-slip; (f) S = 1024, Roc = ∞, no-slip. These
runs are identified as runs 2, 4, 1, 3, 5, 6 respectively in table 1. The different terms shown
are: solid line = (d/dz)(VWT ) ≡ (d/dt)(VT ), dotted line = Vκ∇2T and dashed line is the

residual (d/dz)(VWT )− Vκ∇2T which we equate with
∮
S
TvedS

′ − ∮
S
TU · dS′. All quantities are

non-dimensionalized by κδTL.

entrainment and exchange:
∮
S
wvedS

′ − ∮
S
wU · dS ′, which is negative in the interior,

implying an exchange of upward moving parcels within the plume for downward
moving parcels outside. Near the boundary, this term is large and positive, suggesting
that plumes gain momentum initially not due to their buoyancy anomaly, but due
to the convergence of horizontal flow into jets directed away from the boundary.
Without rotation, the pressure deceleration (about 1/4 of the buoyancy forcing) has
little effect on the net acceleration which continues to increase over the lower half
of the layer, until close to the end of the plume trajectory, when the pressure decel-
eration increases as plumes encounter the opposite boundary, and a more complete
hydrostatic balance is achieved.
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and (b) the exchange coefficient αx = Ux/W .
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Implied entrainment and exchange coefficients

From the mass equation (2.12a) we can obtain an estimate of the mean entrainment
velocity:

Ve =
(d/dz)VW

S
. (5.4)

We calculate α to assess the entrainment hypothesis:

α =
Ve

W
; (5.5)

α defined in this way is shown plotted in figure 12(a) as a function of the plume
position, for all simulations. The entrainment velocity ratio decreases rapidly and
remains close to zero over the upper half of the volume for strong rotation, as shown
by previous studies, while α > 0.1 over most of the volume without rotation, close to
that found for isolated plumes (Papanicolaou & List 1988).

Having found the entrainment velocity, we evaluate the relative contributions of
entrainment and exchange to the heat budget by separating the residual term of the
heat budget as follows. First, we assume that heat is entrained by the same effective
entrainment velocity as mass, so that the heat entrainment term can be approximated
as ∮

S

TvedS
′ ≈ αWSTE = TE

d

dz
VW (5.6)

where TE is the entrained fluid temperature.
We approximate the exchange term similarly:∮

S

TU · dS ′ ≈ TxuxS, (5.7)

where ux is an exchange velocity scale, and Tx an exchange temperature scale. Since
the surface-averaged velocity across the thermal boundary is zero from continuity, ux
represents an r.m.s. anomaly velocity across the boundary.

If we parameterize ux in a similar manner to the entrainment velocity

ux = αxW , (5.8)

we then have the residual in the heat equation (2.10) written as

Residual =

∮
S

TvedS
′ −
∮
S

TU · dS ′ = TE
d

dz
VW + αxTxWS. (5.9)

To solve for αx we make suitable choices for TE and Tx (the temperature difference
between exchanged parcels of fluid): TE = T0, the horizontally averaged temperature,
and Tx = T − T0.

Then

αx =
1

S

(Residual− T0(d/dz)VW )

((T − T0))(W )
. (5.10)

Since the plume is warmer than its surroundings, we expect motion directed away
from the plume centre to be associated with warm temperature anomalies, and motion
toward the plume centre to be associated with cooler temperatures, a down-gradient
lateral flux associated with negative values of both the exchange term and αx. Figure
12(b) shows αx calculated from (5.10); it is negative for all rotating runs, and of greater
magnitude than the entrainment coefficient. Hence for the rotating runs, warm fluid
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Figure 13. The maximum kinetic energy of the plume shown plotted against the maximum
potential energy of the plume, for runs with Roc = 0.75 (diamonds), Roc = 0.3 (triangle) and
Roc = ∞ (square).

from the plume is exchanged with cooler fluid from the exterior, resulting in a down-
gradient flux which decreases the plume heat content. αx has similar magnitude for
all the runs with Roc = 0.75: αx ≈ −0.1, and is independent of Reynolds number.
For Roc = 0.3, αx is slightly smaller.

Without rotation, there is a positive residual in the heat equation over most of
the domain (figure 10f). If we assume that entrained fluid is at the mean ambient
temperature, which is close to zero, this implies a positive exchange coefficient αx
(figure 12b), and a counter-gradient flux (hotter fluid moving into the plume, cooler
fluid moving out of the plume). One explanation for this result is a ‘buoyancy sorting’
mechanism postulated previously in relation to cumulus convection (e.g. Hu 1997).
If the fluid entrained into the plume has a considerable spread of temperatures, and
the plume interior is not well-mixed, subparcels with less than the plume average
temperature may be preferentially detrained, having insufficient buoyancy to continue
ascending with the rest of the plume. Alternatively we may be incorrectly estimat-
ing the entrained heat by assuming the entrained fluid is at the average ambient
temperature. If instead entrained fluid is substantially hotter than the mean ambient
temperature (because for example, other hot plumes are combining to form larger
hot plumes) then entrainment alone, without any counter-gradient flux due to mixing,
could account for the increase in heat flux implied by the positive residual in the heat
equation. In fact evidence described below suggests that individual hot plumes are
combining as they ascend. We therefore favour the argument that entrainment is of
hotter than average fluid for non-rotating plumes as a cause of the diagnosed αx > 0
rather than the buoyancy sorting mechanism.

The energy conversion ratio

To evaluate the net effect of the suppression of acceleration by pressure-gradient
and mixing terms on the conversion of the potential energy of the buoyancy plume
to kinetic energy, we define an energy conversion ratio

RKE =
1
2
W 2

f Vf

g′iVih
, (5.11)

where Wf is the final parcel velocity, Vf is the final volume, g′i is the initial buoyancy
anomaly, Vi is the initial volume and h is the depth over which the parcel travels.
Both the idealized thermal of Morton et al. (1956) and an isolated blob with no
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entrainment would have RKE = 1, with all potential energy converted to kinetic
energy. To evaluate this ratio for each run, we use the maximum g′iVi, which for the
rotating runs is approximately constant over the volume interior. The peak value
of W 2V is used for W 2

f Vf . In both cases, the estimate is made after smoothing by
fitting to a fourth-order polynomial. The volume depth is given by h = 2. In figure
13 W 2

f Vf is shown plotted against g′iVih. Note that all Ro = 0.75 cases appear to lie

on a straight line, corresponding to RKE = 1
6
. The Ro = 0.3 case has a lower value

of RKE = 1
9
, while for Ro = ∞, RKE = 1

4
. This reduction in RKE as Ro decreases

is in agreement with the reduced penetrative fluxes observed in low Rossby number
penetrative convection (Julien et al. 1996b).

To summarize, we find the heat, momentum and mass budgets show little depen-
dence on Rossby number, provided the Rossby number is small. Large differences are
found between the rotating runs and the non-rotating example, but little difference
between Roc = 0.3 and Roc = 0.75. The momentum boundary condition (no slip
or free slip) also has no qualitative influence on the plume behaviour. This may
seem surprising, since the magnitude of vorticity at the boundary is decreased by
dissipation in the viscous boundary layer in the no-slip case, while vertical velocity
away from the boundary layer is enhanced by Ekman pumping (Julien et al. 1996a).
However, these factors influence the properties with which the plume is injected into
the interior, but need not influence the dynamical balances affecting that plume as it
crosses the convecting layer provided the plumes are in the same dynamical regime.
The influence of Reynolds number is seen only in the diffusion terms νV∇2W and
κV∇2T which increase as Re decreases.

Our most significant result can be summarized as follows: at low Rossby numbers
entrainment is replaced by exchange of properties (heat and momentum) between
thermal and ambient fluid without any net change in mass flux, leading to a decline in
both heat and momentum fluxes. This exchange may be parameterized by an exchange
coefficient which depends on Rossby number and depth (αx ≈ −0.1, in the centre
of the volume when Rol < 1; αx > 0 if Rol = ∞) and is independent of Reynolds
number. Non-rotating convection shows no such loss of buoyancy by mixing. Since
many geophysical convection scenarios consist of ensembles of plumes where the
turbulence is generated by the plumes themselves, this exchange parameter may form
the basis for including plume interactions in rotating convection parameterizations.
However we anticipate further studies may reveal more subtle dependence of αx on
Roc at low Roc values, hinted by the Roc = 0.3 results.

We propose that the mechanism for this mixing is plume–plume interactions. We
have earlier shown that in rotating convection, plumes are associated with cyclonic
vortices (Julien et al. 1996a). Similarly to two-dimensional vortex dynamics, these
vortices interact with one-another, leading to vortex merger and straining events, and
introducing a vigorous horizontal stirring. Figure 12 in Julien et al. 1996a shows
the merger of three vortices associated with plumes. Filaments may be shed from
plumes during a merger, or a plume may be strained and entirely mixed into the
surroundings by the action of a neighbouring plume. Hence plumes are subjected to
lateral mixing, induced by the cyclonic vorticity field of neighbouring plumes. In non-
rotating convection, by contrast, there is no cyclonic vorticity field associated with
plumes, and hence no enhanced lateral mixing. Note that while rotation suppresses
expansion of the plume by entrainment because of angular momentum constraints
on the motion, these constraints do not imply a lack of horizontal motion, but simply
an upper limit on the horizontal length scales over which divergence from the plume
can occur. Non-divergent horizontal motion, carrying parcels into and out of the
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Figure 14. Probability density functions of the ellipticity (a2/b2−1)1/2 where a/b is the ratio between
axes lengths, for (a) Roc = 0.75, (Ra − Rac)/Rac = 28.65, no-slip boundary conditions, and (b)
no rotation, (Ra − Rac)/Rac = 1024. Ellipticities are calculated for vertical vorticity (dotted line),
temperature (solid line) and vertical velocity (dashed line). All good plumes at all vertical levels are
included in the sample.

plume on subplume scales, is not suppressed but enhanced by rotation. Note that the
azimuthally averaged plume structures shown in figure 2 may give the illusion that
fluid only enters the plume at its base, and leaves at the top, because only azimuthally
averaged fields are shown. The lateral mixing is provided by incursions into and out
of the plume of equal magnitude, which therefore cancel when azimuthally averaged.
(We quantify these distortions of the plume further below by examining the ellipticity
of the plume shape.) In a subsequent article we will describe in detail actual events
responsible for mixing fluid between plume and its surroundings.

Buoyancy acceleration in the interior is balanced to a large extent by pressure
drag and momentum loss to the environment, reducing the acceleration, and resulting
in a strong reduction in conversion of potential energy to kinetic energy in rotating
plumes as compared with non-rotating plumes. Neither the Rossby-number-dependent
mixing between plume and environment nor the Rossby-number-dependent reduction
in acceleration are represented in classical plume models or in current plume-based
parameterization schemes.

5.3. Deviation from typical plume structure

We have thus far examined only the azimuthally averaged composite plume, but
azimuthal averaging may eliminate some important information about the typical
plume shape: e.g. its ellipticity in the horizontal plane and its tilt from the vertical
axis. We therefore calculate these quantities for individual plumes prior to azimuthal
averaging or compositing. Since the previous parameter-space comparison has shown
that all low Rossby number runs behave in a similar fashion, we will compare only
one rotating and one non-rotating run.

5.3.1. Ellipticity

The ellipticity in the horizontal plane gives a measure of the deviation of the
plume from an axisymmetric shape. Isolated plumes released from a point source
are usually axisymmetric – ellipticity may be a result of the deformations induced by
the turbulence surrounding a plume in the ensemble. As in the study of McWilliams
(1990), we define ellipticity in the horizontal plane in the following manner: for each
plume that passes the selection criteria, at the plume centre height we calculate the
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2× 2 matrix M whose components are

Mi,j =

∫
A

(qi − qi,0)(qj − qj,0)dxdy

A
, (5.12)

where q1 = x, q2 = y, (x0, y0) are the plume-centre coordinates and A is the area over
which F > F(x0, y0)/2.0. The axes lengths a and b of the ellipse which best describes
the area A are given by

1
4
a2 = λ1,

1
4
b2 = λ2, (5.13)

where λ1 and λ2 are eigenvalues of M . The ellipticity ζ is defined as

ζ =

(
a2

b2
− 1

)1/2

=

(
λ1

λ2

− 1

)1/2

; (5.14)

ζ = 0 corresponds to a circular plume. We calculate ellipticities for the vertical velocity,
vertical vorticity and temperature anomaly fields. Probability density functions (p.d.f.s)
of ellipticity for the solution Roc = 0.75, (Ra − Rac)/Rac = 28.43 with no-slip
boundary conditions are shown in figure 14(a). Note the peak in the p.d.f. at a value
of ζ = 0.5, corresponding to a/b = 1.12 for vorticity, and ζ = 1.0 corresponding to
a/b = 1.4 for vertical velocity and temperature. The high-ζ tail of the p.d.f. is broad,
with a significant fraction of plumes having ζ > 2.0, corresponding to a/b > 2.25.
The vorticity is more localized than the other fields, and more axisymmetric. Similar
behaviour is noted for all the other rotating runs. The non-rotating calculation shows
very different behaviour, with the peak in ellipticity p.d.f. in the temperature and
vertical velocity fields at the much smaller value of ζ = 0.5. The p.d.f. declines
rapidly from this peak, so that ζ = 2.0 is very rare. Hence the temperature and
vertical velocity anomalies of the plume structures in non-rotating convection are
significantly more axisymmetric than those in strongly rotating convection. This
concurs with the hypothesis that rotation, by introducing a strong vertical vorticity
signature to the plume, causes the lateral shearing and straining of plumes, due to
vortex–vortex interactions (Julien et al. 1996a). The vortices themselves resist straining
deformations, but the temperature and vertical velocity anomalies associated with a
plume have greater horizontal extent than the associated vortex. Hence they are
more affected by deformations. Increases in ellipticity involve drawing plume fluid
away from its centre and allowing ambient fluid closer to it. Seen in an azimuthally
averaged framework, an increase in ellipticity reduces the magnitude of the anomaly
within the plume volume and hence is interpreted as an exchange of properties within
that volume.

5.3.2. Tilt

We calculate the average tilt of a plume by identifying its axis as a function of height
from the velocity maximum. The total tilt is the ratio of the horizontal separation
between upper-most and lower-most points to the vertical extent of the plume. In
all cases the peak in the p.d.f. is at a tilt value less than 0.5, corresponding to an
angle of π/8.0. The non-rotating case shows a similar distribution of plume tilt. This
value of tilt is sufficient to generate an impression of vertical localization if a tilted
columnar structure is azimuthally averaged, and hence we cannot determine from the
azimuthally averaged structures whether an isolated parcel model is more appropriate
than a plume connected to the source of buoyancy. However, the highest-amplitude
plumes (in terms of heat flux or vertical velocity) have the lowest average tilt. Any
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Figure 15. Probability density functions of (a) the vertical velocity, (b) the vertical vorticity and (c)
the temperature anomaly at the centre of the individual plumes in the ensemble, and (d) the radius,
as determined from the vertical velocity half-width. The plumes have been binned into those in (i)
the lower third (solid line), (ii) the middle third (dotted line), (iii) the upper third (dashed line) of
the volume.

deviations from vertical alignment or axisymmetry (as indicated by ellipticity) are in
any case included in the exchange flux terms. Future work could account for the tilt
of plumes by transforming plume quantities into a coordinate system aligned with
the axis of the plume before azimuthally averaging. However, such transformations
may introduce additional difficulties in compositing plumes with varying along-axis
length.

5.4. Plume ensemble statistics

Thus far we have discussed the properties of the ‘typical plume’, a composite of all
the members of the ensemble of ‘good plumes’ identified by the conditional sampling
algorithm. A description of the transfers effected by the plume ensemble is not
complete unless we know how representative this composite is of the members of the
ensemble, and how much of the variability in the volume is captured by the ‘good
plumes’.

5.4.1. The variability within the ensemble

Figure 15 shows the distributions of the temperature, vertical velocity and vorticity
fields at the individual plume centres, classified into three groups determined by
the plume-centre height. The p.d.f.s largely mimic those of the volume as a whole
(Julien et al. 1996a). Most are fairly Gaussian, e.g. the vertical velocity at all levels
and the temperature in the upper and middle thirds of the volume. The vorticity
has a more exponential distribution in the middle and upper thirds, and a strongly



Plumes in rotating convection. Part 1 181

0.2

Temperature
0.4 0.6 0.80

4

3

2

(a) (b)

1.0 0

Radius
0.1 0.2 0.3 0.4

(×10–4)
5

3

1

0
–6 –4 –2 0 2 4 6

(×104)

(d )
12

8

4

0.5

(c)

0.003

0.002

0.001

0 400 800 1200

1

5

p.d.f.

Vertical velocity Vorticity

p.d.f.

Figure 16. As figure 15 but for the non-rotating case, Ro = ∞.

skewed distribution in the lower third where the plumes originate (figure 15b). The
temperature anomaly in the lower third is also skewed towards hotter plumes, but
with a distribution which is closer to linear. (The temperature boundary conditions
prevent the development of an arbitrarily large temperature anomaly.) The radius
of the plume shows a non-Gaussian distribution, strongly skewed to larger radii at
all vertical levels (figure 15d). Figure 16 shows the analogous quantities for the non-
rotating case. The most important differences are the absence of a cyclonic skewness in
the vorticity and no skewness toward high temperatures in the lower third of the layer
(the p.d.f. is approximately symmetric for the non-rotating case). The distribution of
radius shows an extended tail at large values, especially in the upper two-thirds of
the volume. This suggests that without rotation entrainment may increase the size
of a plume to very large values, while the constraints on rotating plumes bound the
maximum size of a plume. Comparisons with p.d.f.s of quantities measured in a single
axisymmetric plume (Papanicolaou & List 1988; Papantoniou & List 1989) show that
the variability and tendency for extreme events is greatly increased in an ensemble
compared to the time variations within a single plume.

5.4.2. The area filled by plumes

The simplest estimate of plume density would use the average number of good
plumes identified by the conditional sampling algorithm. However, as shown in figure
17, these values are very noisy. Unlike the plume structure itself, the numbers of
plumes identified depends very sensitively on the precise values of all the thresholds
used in the plume extraction.

An alternative estimate of the number of plumes is made by first estimating the
fractional area occupied by the upward plumes by identifying the area Aplumes where
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Figure 17. The average number of good plumes (i.e. satisfying all selection criteria) centred at
each vertical level for Roc = 0.75, (Ra − Rac)/Rac = 28.43, and no-slip boundary conditions.
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Figure 18. The fractional area occupied by vertical velocities greater than W0(z)/2.0 where W0 is
the velocity at the centre of the composite plume located at height z for (a) S = 28.43, Roc = 0.75,
no-slip; (b) S = 1024, Roc = ∞, no-slip.
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Figure 19. The equivalent number of plumes of radius r(z) and vertical extent h (as identified from
the half-width of vertical velocity of the composite plume) required to fill the area occupied by
vertical velocities greater than W0/2.0 for (a) S = 28.43, Roc = 0.75, no-slip; (b) S = 1024, Roc = ∞,
no-slip.

vertical velocities are greater than half the plume-centre velocity at that height, i.e.
W (x, y, z) > W0(z)/2. This fractional area is shown in figure 18. For strong rotation,
the fractional area occupied by the upward plumes decreases along the plume path,
while without rotation the fractional area increases. To estimate the number of plumes
from this fractional area, we first divide Aplumes by the area of a single plume πr2. Then,
since plumes have finite vertical extent, we eliminate overlapping plumes, and count
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Figure 20. The fraction of (a) total kinetic energy, (b) vertical velocity variance, (c) vertical vorticity
variance accounted for by the hot plumes, and (d) convective heat flux accounted for by hot plumes
(solid line), cold plumes (dashed line), and all good plumes (dotted line), for run 1, S = 28.43,
Roc = 0.75, no-slip. Note that the denominator in all cases is a function of height. The plume
variances are calculated by (i) integrating the variance azimuthally and compositing over all good
plumes, (ii) integrating over the volume of the good plumes, (iii) multiplying by the number of good
plumes equivalent to the area occupied by W > W0/2. The cold plume fraction in (d) is estimated
by assuming symmetry between hot and cold plumes.

only those plumes centred at a particular level by dividing by the number of levels
h× nz/(2L) occupied by a typical plume at a particular height, where h is the vertical
extent of a plume, 2L is the height of the volume and nz is the number of vertical levels
into which the volume is discretized. Then we obtain the number of plumes of average
radius r and vertical extent h centred at a particular level: N = Aplumes2L/(hnzπr

2)
(figure 19). With strong rotation N declines very rapidly at first (−1 < z < −0.4),
and thereafter more slowly (−0.4 < z < 0.8), suggesting two different mixing regimes.
Early in the life of a plume smaller weaker structures are eliminated by the shearing
due to strong vortices associated with adjacent stronger plumes, or merged into
the larger plumes. Those plumes which survive then become subject to mixing with
plumes emanating from the opposite boundary. Without rotation the equivalent
number of plumes also decreases – the entrainment is sufficiently large that fewer and
fewer plumes occupy more and more area, suggesting that much of the entrainment
must involve engulfment of other plumes of the same sign. This concurs with our
observation earlier of increasing plume heat content with height.

5.4.3. The fractional variance accounted for by good plumes

Having identified the properties of the hot plumes, and the approximate number
of these plumes in the volume, we can evaluate the fraction of the total variances
accounted for by these plumes. Shown in figure 20 are the fraction of (a) total kinetic
energy (w2+u2+v2)/2, (b) the vertical velocity variance w2 and (c) the vertical vorticity
variance ω2 in the hot plumes for the strongly rotating case. The plumes account for
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Figure 21. As for figure 20 but for run 6, S = 1024, Roc = ∞, no-slip.

a greater fraction of the vertical velocity variance than horizontal velocity variance.
Horizontal velocity maxima are often outside the region bounded by W > W0/2,
and are therefore not accounted for by good plumes. Together with cold plumes,
a total of close to 40% of the vertical velocity variance is accounted for by good
plumes – a significant fraction. The plumes account for a large fraction of the vertical
vorticity variance near the boundary layer (where the plumes are associated with
strong vortices). In the interior however, filaments of vorticity no longer associated
with plumes may exist, and the fractional variance of vorticity contained within the
plumes is reduced.

Figure 20(d) shows the fraction of convective heat flux accounted for by hot plumes,
cold plumes (assuming symmetry between hot and cold plumes) and the sum of hot
and cold plumes. In the volume interior the plumes effect 80% of the heat transport,
and closer to the boundaries an even greater fraction. However the fraction carried
by plumes of a particular sign decreases approximately linearly along the plume path.

The plumes identified by the conditionally sampled composites carry out most of
the heat transport in the volume, but account for a much smaller fraction of the total
kinetic energy, since plumes are selected through a particular relationship between
vertical velocity and temperature, implying positive heat flux localized within the
plumes. No particular relationship between velocity fields is specified and much of
the motion, especially horizontal motion, occurs outside the plume boundary. We do
not expect these values to be very sensitive to the selection threshold values, since
the most-coherent, highest-amplitude plumes are those associated with most of the
vertical heat flux. Lowering the threshold would permit inclusion of more small weak
plumes in the ensemble, not significantly altering the net heat flux.

Figure 21 shows analogous quantities for the non-rotating case. Again plumes
account for a significant fraction of kinetic energy and heat flux. The plumes are not
associated with a coherent vertical vorticity signal, and therefore account for little of
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the vertical vorticity variance. The most significant difference between the rotating
and non-rotating cases is in the heat flux: in the non-rotating case the fraction of heat
flux carried by upwardly moving plumes is approximately uniform over the interior.
Hence there is no gradient in flux carried by plumes along the plume path.

6. Conclusions
We have extracted the typical hot plume structures of rotating Rayleigh–Bénard

convection from numerical solutions using a conditionally sampled compositing tech-
nique, and examined their heat, mass and momentum balances, comparing with
entraining thermal models and with a non-rotating solution. We find that, as for
previous studies of rotating convection (Fernando et al. 1991; Jones & Marshall
1993; Maxworthy & Narimousa 1994; Helfrich 1994), the entrainment rate is rapidly
suppressed after plumes leave the boundary layer, when the local Rossby number < 1
and plumes are in gradient-wind balance. The suppression of entrainment, and the
more-or-less constant volume of the parcel thereafter, ensure that the plume volume
is approximately constant over most of the layer. By contrast, the plume heat con-
tent is continually modified by mixing with the environment despite the absence of
entrainment. Previous studies of rotating plumes assumed that if entrainment ceased,
the parcel would be isolated from interaction with the environment – we show that
this is not so. Instead we find that an open parcel model, such as that of Priestley
(1953) applies. From the heat and mass budget we deduce the relevant mixing velocity
ux = αxW , and find αx ≈ −0.1 at low Rossby numbers. By contrast without rotation
α > 0, so that no loss of buoyancy occurs. Since turbulence levels are equally high in
rotating and non-rotating cases, we propose that the enhanced mixing in the rotating
case must result from the greater plume deformations (indicated by high values of
horizontal ellipticity) induced by vortex–vortex interactions in the rotating plume
ensemble. The plume buoyancy loss in the rotating case results in a reduction in
total plume buoyancy flux along the plume path in the rotating case, while it remains
approximately constant along the plume path in the non-rotating case.

For low Rossby numbers, the parcel acceleration is initially greater than implied by
the buoyancy forcing, due to convergence of flow near the boundary into the plume,
but in the interior acceleration declines, as the buoyancy acceleration is balanced by a
combination of loss of momentum due to mixing and a pressure gradient deceleration.
The resulting conversion of potential energy to kinetic energy is reduced as Rossby
number decreases.

A parameterization scheme based on an entraining thermal model requires several
modifications to describe rotating plume ensemble convection:

(a) The entrainment coefficient is not a constant, but varies with depth and Rossby
number, falling rapidly to close to zero in the strongly rotating cases, and remaining
at about α ≈ 0.2 in the non-rotating case.

(b) In the absence of significant entrainment, mixing continues between environ-
ment and plume, resulting in loss of buoyancy and momentum from the plume, and
modifying the surrounding fluid. This mixing can be parameterized by a mixing coef-
ficient, which is approximately constant in the interior. A weak negative stratification
(observed in numerous numerical simulations and laboratory experiments of rotating
convection: Julien et al. 1996a, b; Klinger & Marshall 1995; Fernando et al. 1991)
can only be maintained by detrainment of plume fluid, and mixing of this fluid into
the environment.

(c) The suppression of acceleration by the combined pressure gradient anomaly
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across the plume and the mixing of momentum with the environment should be
included if the correct conversion of potential to kinetic energy is to be obtained.
While many atmospheric convection parameterizations do not explicitly include the
vertical momentum budget, it is necessary if the parameterization scheme is to capture
overshoot of the neutral buoyancy level and penetrative convection (Donner 1993).
As shown, the efficiency with which plume potential energy is converted to kinetic
energy depends on the Rossby number.

We find that the plumes identified here are the dominant mechanisms of heat
transport across the volume, and within the plume ensemble, momentum, buoyancy
and vorticity have distributions which mimic those of the volume as a whole. Hence
a plume-based parameterization scheme which (i) includes the modifications identi-
fied here and (ii) represents the convecting elements by an ensemble with property
distributions of the form identified here may provide a useful model of convective
transports and mixing.

A later article will describe actual events responsible for the mixing during the
life-cycle of individual plumes, and examine the time-dependent nature of the plume
evolution in greater detail.
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